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� Performance of 316Lss bipolar plates in 
PEMFC was improved by a-C films. 
� Chromium oxides were observed at the 

a-C/316Lss interface after corrosion 
test. 
� Interface-induced a-C film degradation 

mechanism was proposed.  
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A B S T R A C T   

In the field of proton exchange membrane fuel cells (PEMFCs), amorphous carbon (a-C) films have attracted 
considerable attention as a surface functional coating for metallic bipolar plates (BPPs), given that they can 
endow metallic BPPs with both high corrosion resistance and electrical conductivity under harsh PEMFC envi
ronments. In this study, to determine the role of a-C/metallic substrate interfaces on the performance of PEMFCs, 
and clarify the associated degradation mechanism, a series of a-C films are deposited on 316L stainless steel 
(316Lss) samples at different sputtering powers. The composition, microstructure, interfacial contact resistance 
(ICR), and corrosion resistance of the a-C films are then systemically investigated, before and after electro
chemical corrosion tests. The results obtained reveal that all the a-C films can greatly improve the performance of 
316Lss under simulated PEMFC operational conditions, and the a-C film deposited at 0.9 kW exhibits the lowest 
corrosion current density (e7.52 � 10� 3 μA cm� 2) and minimum ICR values (2.91 and 4.00 mΩ cm2, before and 
after the long-time potentiostatic polarization tests, respectively). Furthermore, residual chromium oxides, which 
possibly result in an increased in ICR values, are observed at the a-C/316Lss interface after corrosion test; thus, 
an interface-induced a-C film degradation mechanism is proposed.  
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1. Introduction 

In the past few decades, the development of proton exchange 
membrane fuel cells (PEMFCs) as a promising new power source for 
next-generation automobiles, as well as stationary and portable devices, 
has been rapidly increasing [1–6]. Bipolar plates (BPPs), which are a key 
component of PEMFCs, are required to possess an excellent electrical 
conductivity and a high resistance to corrosion. These properties are 
predominately important, given the harsh conditions under which 
PEMFCs are used [5–7]. Ultra-thin sheet metals, including stainless steel 
and titanium plates, owing to their high mechanical strength, easy 
formability, and low cost, are promising choices to replace traditional 
graphite sheets for BPPs fabrication [7–14]. Regrettably, in the com
bined acidic (pH ¼ 2–5), humid, and high temperature environment in 
which PEMFCs are employed, loss of metallic BPPs, following the release 
of catalyst-poisoning ions and increased electrical resistivity, can 
degrade the performance of PEMFCs, especially after a long-time oper
ation [7,15]. To overcome such drawbacks, various protective coatings, 
including noble metal Au/Pt films, metal carbide, and amorphous car
bon (a-C) films, are being attempted, supposed that they can endow 
metallic BPPs with good electrical conductivity, and the same time, 
improve their interfacial contact resistance (ICR) as well as their 
corrosion resistance level [3,16,17]. 

Among the developed coating strategies, amorphous carbon (a-C) 
films are a promising material for metallic BPP protection. Their elec
trical conductivity and corrosive properties can be modulated by 
adjusting their sp2/sp3 ratio, introducing a third element, or a buff layer 
[18–23]. Additionally, considering the possibility of the industrial mass 
production and low material cost of a-C films, many studies have 
recently attempted to explore the performance of a-C film protected 
metallic BPPs, so as to clarify the associated degradation mechanism, 
especially with respect to long-time operation. For example, after a 7 h 
potentiostatic test, Wu et al. pointed out that the ICR and corrosion 
resistance of 316L stainless steel (316Lss) were greatly improved owing 
to a chromium-containing a-C film coating, and they attributed the ICR 
variation to a higher sp3/sp2 ratio [24]. Yi et al. conducted durability 
tests on a-C films for 24 h. Their investigation revealed that limited 
defects and the proper graphitization of a-C films could improve metallic 
BPP performance [25,26]. Additionally, based on molecular dynamics 
simulations, a more graphite-like and denser structure has been sug
gested for the a-C films [19]. Regarding the degradation mechanism 
a-C/metallic BPPs, the formation of a porous passive film [27], the in
crease in adsorbed oxygen content on defective sites and dangling bands 
on the film surface [28], and the self-passivating ability resulting from 
the oxidation of the metallic atoms in the a-C films [29], have been 
proposed. Until now, the effect of a-C films on the performance of 
PEMFCs has been adequately studied experimentally, and based on 
molecular dynamics simulations, a surface passivation degradation 
mechanism has been proposed. However, the role of the a-C/metallic 
substrate interface, which is still unclear, is usually neglected. It is 
possible that the corrosive electrolytes can induce certain passivation 
layers on the surface of uncoated metallic BPPs, and thus damaging the 
a-C/metallic substrate. Alternatively, the a-C/bufflayer interface could 
act as a key contributor to the degradation of a-C films on metallic BPPs, 
and then restricting the design of high-performance a-C films used in 
PEMFCs. 

In this study, H-free a-C films were selected and deposited on 316Lss 
using the direct current magnetron sputter (DCMS) technique. The 
composition and structure of the a-C films were adjusted by changing 
the sputtering power, and the dependence of the sp2/sp3 ratio and sp2 

clusters of the a-C films on interfacial electrical conductivity and 
corrosion resistance was systematically investigated. In addition, no 
extra employed buffer-layer benefited the direct observation on evolu
tion of a-C/316Lss interface before and after electrochemical test. After 
electrochemical tests in a simulated corrosive PEMFC environment, the 
ICR and interfacial characteristics of the a-C/316Lss system were 

studied to clarify the degradation mechanism, which could provide new 
insights regarding the designing of high-performance a-C films for 
metallic BPPs in PEMFCs. 

2. Experimental details 

a-C films were prepared on p-type Si (100) wafers, quartzes, and 
316Lss substrates (Φ 1.5 mm � 3 mm) using the DCMS technique with a 
rectangular piece of graphite (dimension, 380 mm � 100 mm � 7 mm; 
purity, 99.99%) as the cathode target [30]. Before fixing in the chamber, 
all the substrates were cleaned ultrasonically using acetone and alcohol 
and dried using high-purity N2. With the chamber vacuum bellowed at 3 
� 10� 3 Pa, Arþ glow discharge was used to clean the substrates at � 350 
V bias for 30 min. During deposition, the negative DC bias was kept at 
� 200 V [18,31], and a series a-C films were deposited at various target 
sputtering powers (0.9, 1.2, 1.5, 1.8, and 2.1 kW). By adjusting the 
deposition time, the thicknesses of all the a-C films was controlled to 
195 � 10 nm. Details of the deposition can be referred to our previous 
work [32–34]. 

The thickness of the deposited a-C films was measured using a sur
face profilometer (Alpha-Step IQ, US). The layers were deposited using a 
shadow mask, and the roughness and surface morphology of the a-C 
films were characterized using an atomic force microscope (AFM) with a 
scanning probe microscope tapping mode set at a scanning frequency of 
2.0 Hz (3100V, Veeco, US). The Root-mean-square roughness (Rq) of the 
a-C films was calculated from 512 � 512 surface height data points 
obtained from a 1 μ m � 1 μ m scanning area. The adhesion of the a-C 
films to the 316Lss substrate was evaluated by a scratch test system 
(CSM Revetest), using a spheroconical diamond probe with an end 
radius of 200 μm. The scratch length was 3 mm, the maximum load was 
30 N, the loading rate was 29 N/min, and the critical load value (Lc) was 
determined at which the catastrophic failure of the a-C film occurred. 
After the tests, the scratch traces were observed using optical micro
scopy, at least three tests were conducted for each sample. 

The chemical composition of the films was characterized using X-ray 
photoelectron spectroscopy (XPS, Axis ultradld, Japan), while their 
constituent bonds were identified using monochromatic Al Kα irradia
tion at a pass energy of 160 eV. To preserve the original surface structure 
of the a-C films, no pre-treatment was employed. The sp2 content and the 
sp2/sp3 ratio of the a-C films were determined using fitting C 1s peak. 
After Shirley background elimination, the mixture that fitted Gauss 
(20%) and Lorentz (80%) was used [35–37]. A confocal micro-Raman 
spectrometer (Renishaw inVia-reflex, UK, 532 nm) with a scanning 
range of 800–2000 cm� 1 was used to detect the carbon bond structure of 
the a-C films, while high-resolution transmission electron microscopy 
(TEM, Tecnai F20, US) was performed to observe the microstructure of 
the typical a-C films deposited at 0.9 kW. TEM samples were prepared 
using a focused ion beam (FIB) instrument (Carl Zeiss, Auriga), and Pt 
layer was preliminarily deposited to protect the sample surface before 
FIB treatment. Electron energy loss spectroscopy (EELS) measurements 
were conducted using a scanning-transmission electron microscopy 
(STEM, Tecnai F20, US). The sp2 fraction was obtained by determining 
the area ratio of the π* and σ* states of the unknown sample and 
referenced to the standard highly oriented pyrolytic graphite (HOPG, 
100% sp2-C bonds). 

Hall-effect measurements (Nanometrics, HP-5500C, US) were per
formed to determine the electrical resistivity of the a-C films deposited 
on quartz substrate. The ICR between the specimen and conductive 
carbon paper (Toray TGP-H-060) was evaluated as follows. During the 
ICR test, two carbon paper pieces were sandwiched between two gold- 
coated copper plates and the coated specimen [7,38]. The test pres
sure (1.5 MPa), which is typical of the actual mechanical loading con
dition in actual fuel cell stacks, was program-controlled using a 
universal electronic testing machine controlled by microcomputer 
(CMT5105, US) [39]. The external circuit was set at a constant current of 
1 A using a constant current power supply, and a precision multimeter 
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was used to measure the voltage change of the whole circuit under 
different pressures. The resistance in the circuit was calculated using 
voltammetry. 

Electrochemical corrosion measurements were performed on the 
Gamry electrochemical workstation (Reference 600þ, US) using the 
conventional three-electrode cell. The samples, platinum electrode, and 
the Ag/AgCl electrode were used as the working, auxiliary, and refer
ence electrodes, respectively. For potentiodyamic polarization tests at a 
0.5 mV s� 1 sweep rate, a potential ranging between � 0.2 and þ 1.0 V vs. 
Ag/AgCl was used [40–42]. To evaluate carbon film corrosion stability 
in the simulated fuel cell cathode environment, the working electrode 
potential was kept constant at 0.6 V for 4 h, and to evaluate the corrosion 
stability of the a-C films in a simulated PEMFC cathode environment, the 
working electrode potential was kept constant at 0.6 V vs. Ag/AgCl for 
12 h during the potentiostatic polarization tests. To simulate PEMFC 
operational conditions, all electrochemical experiments were conducted 
in a 0.5 M H2SO4 þ 5 ppm HF solution at 80 �C, bubbled with pressured 
air. Before the tests, open-circuit potentials (OCPs) were measured for 
30 min to ensure that the surface state was stable [18,31,42,43]. The 
electrochemical impedance spectroscopy (EIS) technique was used to 
evaluate the corrosion properties of all the coated and bare 316Lss 
substrates in simulated PEMFC solution. The EIS measurements were 
recorded at OCP in the frequency range of 105 to 10� 2 Hz with 10 mV 
sinusoidal perturbation. After the potentiostatic test, 100 mL solution 
was collected and analysed by inductively-coupled plasma optical 
emission spectroscopy (ICP-OES, SPECTRO ARCOSII, DE). 

3. Results and discussion 

3.1. Thickness, morphology and adhesion of the deposited a-C films 

The deposition rate and thickness of the a-C films deposited at 
different sputtering powers are presented in Table 1. The average 
deposition rate increased monotonically from 2.4 to 5.1 nm min� 1 as the 
sputtering power increased from 0.9 to 2.1 kW. This observation could 
be attributed to the change in deposition rate per unit power, because 
the higher sputtering power or ion energy brings about a much higher 
sputtering yield, resulting in a higher deposition rate [44–46]. 

Even though the Rq of the a-C films increased from 1.0 nm at 0.9 kW 
to 1.8 nm at 2.1 kW with increasing power as shown in Table 1, all the a- 
C films were generally compact and dense, without any visible defects 
(the tapping-mode AFM morphologies of the a-C films are displayed in 
Fig. S1 of the supplementary materials). Usually, at higher sputtering 
powers, a higher deposition rate gives the newly deposited particles less 
time to combine in their low energy configurations [47,48], resulting in 
increased surface roughness, due to the atomic shadowing effect as well 
as the limited adatom mobility during deposition [49,50]. 

Scratch test was used to evaluate and compare the adhesion strength 
of the a-C films deposited on 316Lss. For all coated 316Lss, their 
adhesion strengths were around 12.5 � 2 N (the optical micrographs of 
the typical scratch traces are provided in Fig. S2 of the supplementary 
materials), as shown in Table 1, which could be concluded that the 
change of sputtering power had little effect on the adhesion strength 
between a-C film and 316Lss substrate. 

3.2. Chemical composition and structure of deposited a-C films 

Fig. 1(a) shows the XPS spectrum of the a-C films, where they all 
consisted mainly of C and O atoms. The presence of O atoms could be 
attributed to the residual oxygen in the vacuum chamber during film 
deposition, or to the oxygen adsorbed when the films were exposed to air 
[51,52]. Three C atom chemical states, namely sp2, sp3, and C–O/C––O 
hybridizations centred at 284.6, 285.4, and 286.6 eV, respectively, as 
shown in Fig. 1(b), were observed [37,51–53]. The sp2 and sp3 hy
bridized carbon contents of the a-C films was deduced by integrating the 
peak area displayed in Fig. 1(c). The results showed that as the sput
tering power increased from 0.9 to 2.1 kW, the sp2 content decreased 
from e53 to 44%, indicating a substantially increased ionized fraction of 
C species in the plasma at a higher power and a higher deposition rate 
[44,46,54]. 

The Raman spectra of the a-C films deposited on a silicon substrate in 
the 800–2000 cm� 1 range are shown in Fig. 1(d). Usually, it is possible 
that after Gaussian fitting, the Raman spectra of typical amorphous 
carbon shows two peaks at 1350 cm� 1 (D peak) and 1560 cm� 1 (G peak) 
[55–57]. The G peak results from the sp2 cluster structure, originating 
from the stretching vibration of the carbon ring and the C–C bonds in 
carbon chains, while the D peak only results from the disordered fine 
graphite sp2 structure, originating from the breathing vibration of the 
carbon ring [53]. Information regarding the structure of the a-C films 
can be evaluated by considering the fitted half maximum of the G peak 
(G FWHM), the G peak position, and the peak area ID/IG ratio values 
[58]. As shown in Fig. 1(e), an increase in sputtering power from 0.9 to 
2.1 kW resulted in a visible increase in G FWHM from 170.7 to 180.2 
cm� 1, indicating an increase in the structural disorder degree of the a-C 
matrix. Additionally, both the G peak position and the ID/IG ratio 
decreased, with the G peak position changing slightly from 1554 to 
1548 cm� 1, and the ID/IG ratio obviously changing from its maximum 
value, e3.53 at 0.9 kW to its minimum value, 2.86 at 2.1 kW. This 
demonstrated a decrease in sp2 content and a reduction in the average 
size of sp2 clusters with increasing sputtering power [57]. 

The TEM cross-sectional morphology, high resolution transmission 
electron microscopy (HRTEM) images, and the corresponding selected 
area electron diffraction (SAED) patterns of the typical a-C films pre
pared at 0.9 kW are shown in Fig. 2. Obviously, as displayed in Fig. 2(a), 
the thickness of the a-C film was e200 nm, a finding that is consistent 
with the thickness measurements obtained using the surface profil
ometer. The corresponding SAED patterns shown in Fig. 2(b) only 
revealed a diffuse halo, indicating the amorphous structure of the 
sample. The representative EELS spectra (Fig. 2(c)) showed a clearly 
visible π* peak at e285 eV, and the massif between 290 and 305 eV was 
rarely feature, which was also a typical signature of amorphous carbon 
materials [59]. Additionally, according to the fitting requirements of the 
double window method, the π* peak that centred at 285 eV was fitted 
with a Gaussian function, while the σ* peak was integrated within the 
small energy window between 290 and 305 eV. Using equation (1), the 
fraction of sp2 bonded carbon atoms, x could be calculated. 

ðSπ*=Sσ*Þfilm

ðSπ*=Sσ*Þstandard
¼

3 � x
4x

; (1)  

where Sπ* and Sσ* represent the π* and σ* peak integral areas, respec
tively, as marked by the grey area in Fig. 2(c) [60,61]. Highly oriented 
pyrolytic graphite (HOPG) was used as a reference. The calculated sp2-C 
fractions from different points on the samples were all e60%, an 
observation that is consistent with the results of XPS analysis. 

3.3. Electrical and electrochemical corrosion properties of the deposited a- 
C films 

The changes in the resistivity and I–V characteristics of the a-C films 
are shown in Fig. 3. All the films showed a linear I–V relationship, 

Table 1 
Average deposition rate, thickness, Rq and adhesion of a-C films deposited at 
different powers.  

Power 
(kW) 

Thickness 
(nm) 

Deposition Rate 
(nm⋅min� 1) 

Rq (nm) Lc (N) 

0.9 188 2.4 1.0 12.2 
1.2 204 2.9 1.1 14.0 
1.5 198 3.6 1.4 12.5 
1.8 198 4.0 1.6 12.4 
2.1 203 5.1 1.8 11.4  
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indicating that the carrier transport was ohmic. A plot of the resistivity 
(R) of the a-C films, obtained from the I–V plots against sputtering 
power, showed that R increased monotonically from its minimum value, 
1.797 � 10� 3 Ω cm, to its maximum value, 1.027 � 10� 2 Ω cm, at 2.1 
kW. 

The potentiodynamic polarization curves of the a-C films between 
� 0.2 and þ 1.0 V vs. Ag/AgCl, at a 0.5 mV s� 1 sweep rate, are shown in 
Fig. 4(a). Apparently, compared with the bare 316Lss substrate, the 
coated samples showed a lower icorr and a higher Ecorr. The self-corrosion 
potential of the a-C films was e0.2 V vs. Ag/AgCl, which was e0.3 V 
higher than that of bare 316Lss. Fig. 4(b) illustrates the passivation 
current densities observed at 0.6 V vs. Ag/AgCl, which was a typical 
working potential in PEMFCs. The a-C film deposited at 0.9 kW showed 

the best anticorrosive performance. Its corrosion current density at the 
applied voltage (0.6 V) was 7.52 � 10� 3 μA cm� 2, which was much 
lower than the 2020 technical target (1 μA cm� 2), suggested by the US 
Department of Energy [5,62–64]. An increase in power to 2.1 kW 
resulted in a rapid growth in the corresponding current densities of the 
a-C films to 0.113 μA cm� 2, which might be attributed to the loose 
structures of the a-C films induced by excess ion bombardment at a 
higher sputtering power. 

According to the results of EIS, compared with bare 316Lss sub
strates, all the a-C/316Lss displayed a larger capacitive arc in Nyquist 
diagram, a higher low-frequency impedance and a wider phase angle 
platform in Bode diagram, indicating that all the a-C films greatly 
improved the electrochemical corrosion resistance of 316Lss in simulate 

Fig. 1. (a) XPS spectra; (b) C 1s peaks, and (c) sp2 content change of a-C films at different sputtering powers; (d) Raman spectra and (e) Corresponding fitting results 
of the a-C films deposited at different sputtering powers. 
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Fig. 3. (a) I–V characteristic plot and (b) Electrical resistivity of the a-C films deposited at different powers.  

Fig. 4. (a) Potentiodynamic polarization curves observed between � 0.2 and þ 1.0 V vs. Ag/AgCl in the acid corrosion electrolyte at 80 �C; (b) Passivated current 
densities of all the samples at 0.6 V vs. Ag/AgCl; (c) Long-time potentiostatic tests on bare and coated 316Lss with 0.6 V vs. Ag/AgCl, in acid corrosion electrolyte at 
80 �C for 12 h, and (d) Corresponding final stable current densities. 

Fig. 2. (a) Cross-sectional TEM image, (b) HRTEM image and corresponding SAED, and (c) EELS spectra of the a-C sample deposited at 0.9 kW.  
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PEMFC solution (EIS result are provided in Fig. S3 of the supplementary 
materials). In addition, the a-C film deposited at 0.9 kW had the largest 
electrochemical corrosion resistance, which consisted with potentio
dyamic polarization tests. Correspondingly, the polarization resistances 
(Rp) of the coated 316Lss substrate was at least one order of magnitude 
higher than that of the bare 316Lss substrate, and the a-C film deposited 
at 0.9 kW had the highest Rp, as shown in Table 3. 

To determine the stability of the specimens, long-time (12 h) 
potentiostatic tests were also performed. The current density curves of 
the bare and coated 316Lss samples are shown in Fig. 4(c), while their 
final stable current densities are presented in Fig. 4(d). Compared with 
the bare 316Lss samples, which showed a stable current density 
throughout the testing period, the a-C film coated samples behaved a 
significant decrease in current density, which only became stable after 
e5 h of testing, as shown in Fig. 4(c). In addition, an increase in power 
from 0.9 to 2.1 kW resulted in a gradual increase in the stable current 
densities of the a-C films from 3.99 � 10� 3 to a higher value, 2.948 �
10� 2 μA cm� 2, as shown in Fig. 4(d). This observation is well consistent 
with the potentiodynamic polarization curves of the a-C films. 

The metal ions released to the solution were important parameters in 
gauging the properties of bipolar plate materials, because the released 
ions may poison the membrane electrode assembly and reduce the 
power output [65]. The solutions after the potentiostatic test for 12 h 
were collected and the dissolved Fe and Cr ions, which are the major 
elements in 316Lss, were determined by ICP-OES, as summarized in 
Table 2. For bare 316Lss, the concentrations of the Cr ions and Fe ions in 
the solution reached their maximum values at around 0.61 and 9.65 
ppm, simultaneously, the concentration of the Fe ions was approxi
mately 15 times larger than that of Cr ions, which implied that Fe was 
dissolved easily in this acidic solution [66]. With the application of a-C 
films, the Fe and Cr ions concentrations were remarkably reduced, 
which indicated that a-C films can effectively prevent 316Lss from 
corrosion, even no Cr signal could be detected for the samples deposited 
at 0.9 and 1.2 kW, suggesting that the concentration of the Cr ions was 
less than 0.01 ppm. 

3.4. Electrical resistance of contact interface of the deposited a-C films 

Of all the required properties of surface-modified metallic BPPs, 
interfacial conductivity, which can limit the high performance and life 
of a cell, is one of the most important properties. Thus, in this study, we 
focused the ICR before and after the long-time potentiostatic polariza
tion tests, as shown in Table 3. Before the long-time potentiostatic tests, 
an increase in sputtering power resulted in a slight increase in the ICR 
value of a-C coated 316Lss samples from 2.91 to 4.00 mΩ cm2. This, 
however, was still much lower than that of bare 316Lss samples. After 
the durability tests, all the samples exhibited much higher ICR values, 
while that of 316Lss increased by e58.7%, i.e., from 12.10 to 19.28 mΩ 
cm2. Furthermore, the ICR values of all the coated 316Lss increased with 
increasing sputtering power, and the corresponding ICR value increase 

ratio increased monotonously from 39.5 to 97.2%. Nevertheless, the ICR 
values were still at least 50% lower than those of bare 316Lss samples, 
indicating that the introduction of a-C films could effectively reduce the 
ICR, and improve 316Lss durability. 

3.5. Microstructure characterization after the long-time electrochemical 
corrosion 

Fig. 5(a) shows the C 1s core-level spectra of the samples, following 
the potentiostatic test that can reveal the corrosion behaviour of the a-C 
surface. The sp2/sp3 ratios of all the a-C films decreased to a certain 
degree, given that the weaker C-sp2 bond was easily corroded in the 
harsh acid electrolyte compared with the stronger C-sp3 bond [25,26, 
67], as shown in Fig. 5(b) and (c). Even though the C–O/C––O ratio 
remained relatively constant (Fig. 5(d)), the oxygen content of the a-C 
films increased by at least 250% (Fig. 5(e)), an observation that could be 
attributed to the corrosion of the a-C cathode environment caused by 
oxygen absorption [68,69]. 

Additionally, to evaluate the sp3/sp2 content change of the a-C films 
from substrate to surface, EELS was employed, and a typical sample 
deposited at 0.9 kW was analysed (Fig. 6). From Fig. 6(b) and (d) 
revealed that there was a slight change in the composition of the a-C 
films following the polarization test. But the sp3/sp2 content from sub
strate to surface remained very stable (the specific locations are labelled 
in Fig. 6(a) and (c)). Considering both XPS and EELS results, it was valid 
to conclude that after the long-time potentiostatic test, the a-C film 
closer to the surface was weakly oxidized, resulting in an ultra-thin sp3- 
rich surface layer. 

Further, the evolution of the interface between the 316Lss substrate 
and the a-C film was investigated using high-angle annular dark field 
(HAADF) imaging and corresponding EDS. Before the long-time poten
tiostatic test, a continuous and well bonded interface was clearly 
observed between the substrate and the a-C film, and no obvious defects 
existed (Fig. 7(a)). Additionally, the corresponding EDS scanning also 
revealed that an obvious interface existed between the substrate and a-C 
film (Fig. 7(b)). No oxygen-rich area was observed in the a-C films or the 
316Lss substrate (Fig. 7(c)). After the long-time potentiostatic test, the 
morphology of the a-C film and the corresponding element distribution 
did not significantly change, indicating that the a-C film remained stable 
during electrochemical corrosion. However, in the interface, some 
spherical defects, ~150–200 nm were observed as shown in Fig. 7(d), 
and corresponding EDS scanning revealed that the defect area was rich 
in Cr and O elements, while Fe atoms were virtually absent, which can 
be explained from the dissolution of Fe, corresponding to ICP-OES test. 
This is because iron oxides and hydroxides cannot remain stable in such 
harsh acidic environments [70], while Cr atoms can remain as the 
anticorrosive Cr2O3 [71], which typically characterizes 316Lss in acidic 
environment [70–72]. 

Table 2 
Concentrations of Fe and Cr ions leached from 316Lss under simulated PEMFC 
operational conditions after 12 h of potentiostatic test.  

Sample Concentrations of Fe (ppm) Concentrations of Cr (ppm) 

Bare 316Lss 9.652 0.612 
a-C coated 316Lss  

(0.9 kW) 
0.130 – 

a-C coated 316Lss  
(1.2 kW) 

0.497 – 

a-C coated 316Lss  
(1.5 kW) 

0.864 0.058 

a-C coated 316Lss  
(1.8 kW) 

2.125 0.106 

a-C coated 316Lss  
(2.1 kW) 

3.386 0.306  

Table 3 
The Rp and ICR values of all the samples before and after the long-time poten
tiostatic tests.  

Sample ICR (before tests) 
(mΩ⋅cm2) 

ICR (after tests) 
(mΩ⋅cm2) 

Rp ( � 106 Ω cm2) 

Bare 316Lss 12.10 19.28 1.01 
a-C coated 316Lss  

(0.9 kW) 
2.91 4.06 82.6 

a-C coated 316Lss  
(1.2 kW) 

3.05 4.78 72.8 

a-C coated 316Lss  
(1.5 kW) 

3.28 5.75 30.2 

a-C coated 316Lss  
(1.8 kW) 

3.54 6.72 25.4 

a-C coated 316Lss  
(2.1 kW) 

4.00 7.89 18.9  
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3.6. Proposed degradation mechanism 

Based on the changes in the properties and microstructures of the a-C 
films as well as the a-C/316Lss interface before and after the potentio
static test, two main degradation mechanisms were considered i.e., the 
surface oxidation of the a-C films and the interfacial corrosion between 

the substrate and the a-C films. 
Firstly, it has been suggested in previous studies that in the harsh 

acid electrolytes, and under PEMFC operational conditions, the surface 
oxidation of a-C films may occur, and an ultra-thin sp3-rich layer might 
be formed on the a-C film surface given that the weak C-sp2 bond can be 
easily corroded [25,26,67]. 

Fig. 6. STEM image of film deposited at 0.9 kW and EELS spectra obtained from different points on the STEM image labelled a1-c1 and a2-c2 (a, b) before and (c, d) 
after the long-time potentiostatic test. 

Fig. 5. (a) XPS spectra, (b) sp2, (c) sp3, (d) C–O/C––O, and (e) Oxygen content of the a-C films after the long-time potentiostatic test.  
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Moreover, in this study, the sp2 content of the as-deposited a-C films 
significantly decreased at elevated sputtering powers, as confirmed by 
the XPS and Raman spectra. The interfacial conductivities of the films 
also deteriorated as the number of sp2-rich clusters in the a-C films 
decreased, a finding that is consistent with the ICR value obtained. After 
the long-time electrochemical corrosion test, the a-C closer to the surface 
was possibly oxidized slightly, forming an ultra-thin sp3-rich layer in the 
surface, which possibly explains the uneven increase in the ICR value. 
However, with an increase in the sputtering power, the ICR increase 
ratios of the a-C films increased monotonously from 39.5 to 97.2%, an 

observation that is inconsistent with their sp2 content, given that a-C 
films with higher sp2 content are expected to show an inferior anticor
rosive property and a larger ICR increase ratio, indicating that the a-C 
films/316Lss interface could also play an important role in the degra
dation of a-C films. 

During DCMS deposition, the inevitable defects like pinholes were 
formed in the a-C films. Thereafter, the corrosive working liquid can 
reach metallic substrate through these defects in case of long-time 
electrochemical test, which led to the corrosion of the substrate and 
the subsequent porous structure. However, the stable passive layer of 

Fig. 7. HAADF images of the a-C films deposited at 0.9 kW, and the corresponding EDS line-scanning mapping of the red square area before (a), (b), (c) and after (d), 
(e), (f) the long-time potentiostatic test. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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formed Cr2O3 on 316Lss remained in the interface, which suppressed the 
PEMFC carrier transport and resulted in an increase in ICR and a 
decreased performance. Furthermore, based on the results of the 
investigation of the interface between the a-C films and 316Lss, another 
possible interface-induced degradation mechanism of the a-C films is 
proposed in this study, as shown in Fig. 8. 

4. Conclusion 

In summary, a designed series of a-C films were deposited on 316Lss 
samples by a DCMS technique at different sputtering target powers. The 
influence of the a-C/316Lss substrate interface on the performance of 
PEMFCs was focused. All the a-C films greatly improved the perfor
mance of the metallic 316Lss BPPs under simulated PEMFC operational 
conditions. In particular, comparing with that observed using bare 
316Lss samples, the use of the optimal a-C films (0.9 kW) could reduce 
the maximum corrosion current density from 33.68 to e7.52 � 10� 3 μA 
cm� 2, resulting in minimum ICR values of 2.91 and 4.00 mΩ cm2 before 
and after the long-time potentiostatic polarization tests, respectively. 
Surface and interfacial analyses established that after the long-time 
potentiostatic tests, the morphology of the a-C films as well as their 
corresponding element distribution did not change remarkably. How
ever, some Cr oxide-rich spherical defects, which could be responsible 
for the increased ICR, were observed in the a-C/316Lss interface. In this 
regard, an interface-induced a-C film degradation mechanism was also 
proposed for the a-C/316Lss system. 
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